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Experimental study of a surfactant-driven
fingering phenomenon in a Hele-Shaw cell
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(Received 15 March 2004 and in revised form 25 September 2004)

We present an experimental study of a new surfactant-driven fingering phenomenon in
a Hele-Shaw cell. First, the threshold of instability is examined and compared with the
linear theory. Second, the nonlinear evolution of fingering is quantified, and steady and
unsteady patterns are distinguished. A wide range of dynamical behaviour is observed
from drifting and merging fingers to cusp formation between fingers and subsequent
ejection of air bubbles. All experiments are performed with a pure surfactant – sodium
dodecyl sulphate – thus allowing us to obtain a well-defined bifurcation map for the
specific kinetic and material properties of this surface-active substance. The measure-
ments are conducted in a Hele-Shaw cell with smooth and roughened walls. A basic
physical model is proposed to obtain further insight into the influence of the surfactant
properties on the dip-coating process and, as a result, on the critical phenomena. The
study allows us to resolve the discrepancies between previous experimental results
and linear theory.

1. Introduction
The discovery by Chan & Liang (1997) of a new type of instability in a well-studied

physical set-up – a Hele-Shaw cell – in the presence of a pre-existing wetting layer of
surfactant offers new perspectives for studying fundamental aspects of surfactant-
driven hydrodynamic instabilities as well as surfactant material behaviour. We
refer the reader to Krechetnikov & Homsy (2004) for a detailed discussion of this
phenomenon in the context of Marangoni-driven instabilities and for the history of the
problem. While the linear stability properties of this new phenomenon have been
studied in the above cited work, some discrepancies between the experimental results
by Chan & Liang (1997) and our theoretical predictions were revealed. This makes it
necessary to conduct further experiments in order to test the predictions of the theory
and perform a more extensive study of the nonlinear regimes of the instability.

First, we remind the reader of the main results by Chan & Liang (1997). Their
experiments were performed in a Hele-Shaw cell of 300 µm gap width with three types
of surfactants: two commercial soap detergents – Moore Dish Wash (MDW), which
is a mixture of three components, and a two-component soap (Salatt detergent) – and
pure sodium dodecyl sulphate (SDS). First a wetting layer of surfactant solution was
deposited on the inner walls by withdrawing the cell from a bath of surfactant solution.
Then, the coated cell was driven into the same surfactant solution at a constant speed
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and it was observed that the air/liquid interface is unstable under specific conditions:
(a) the speed of driving should be above a critical velocity (below which the interface
remains essentially flat), and (b) the surfactant concentration must be above the
critical micellar concentration (CMC). It was also found that the instability occurs
only for SDS or MDW solutions. In the nonlinear regime, Chan & Liang (1997)
observed that the fingering patterns reaches a steady state, with blunted fronts and
sharp tails pointing in the direction opposite to the interface motion. One peculiarity
of this phenomenon is its apparent contradiction to the linear stability analysis by
Saffman & Taylor (1958) of the viscous fingering instability, which predicts that the
interface between a fluid displacing a less viscous one is always stable.

Chan (2000) hypothesized that this new instability is due to the accumulation
of surfactants at the advancing interface and the diffusion of surfactants in the
wetting layer, but did not provide an analysis that would support or refute this
hypothesis. Krechetnikov & Homsy (2004) performed a linear stability analysis to
explain the experimental observations of Chan & Liang (1997) and to reveal the
instability mechanism. In particular, the crucial effect of the pre-existing wetting layer
of surfactant was identified: the instability is due to the thickening of the wetting layer
induced by Marangoni stresses which originate from the accumulation of surfactants
in the cap region of the meniscus as it is driven into the cell. The presence of the
wetting layer and of an advancing meniscus is crucially important for producing the
instability. A striking discrepancy between the theory and previous experiments by
Chan & Liang (1997) is that the former predicts instability only for concentrations
below CMC, while the latter claims it only occurs above CMC.

In the present work, we study carefully the variation of the critical speed for
the onset of the instability over the full range of two key parameters, the bulk
surfactant concentration and the speed of withdrawal of the plates. The details of the
experimental setup and properties of the single molecule surfactant used in our experi-
ments are given in § 2. In § 3 we discuss the experiments performed near the threshold
of instability and compare them with the conclusions drawn by Chan & Liang (1997),
in particular that the instability occurs only for bulk concentrations above CMC.
Section 4 is devoted to a comparison with the linear theory by Krechetnikov & Homsy
(2004). Finally, in § 5, we describe the fingering dynamics observed in the nonlinear
regime.

2. Basic description of experiments
2.1. Experimental setup and procedure

The experiments are conducted in the vertical Hele-Shaw cell sketched in figure 1.
Two glass plates of 64 cm long and 15 cm wide are held together by clamps which are
regularly spaced in order to maintain a uniform gap. The gap thickness is fixed by two
plastic shims (2.5 cm wide and 64 cm long) 310 µm thick placed between the plates at
both borders. We suspend the cell vertically on a two-rail translation stage controlled
by a stepper motor (Velmex) producing speeds ranging from 0.127 to 3.87 cm s−1. A
Plexiglas tank containing an aqueous solution of surfactant is placed underneath the
cell.

The experimental procedure is as follows. The dry cell is first lowered into the tank
and then withdrawn at a constant speed Vd , thus depositing a wetting layer on the
plates as shown schematically in figure 1. The thickness of this film is determined
by the relative speed of the plate and the meniscus and by the surfactant dynamics.
We conducted experiments over a range of capillary numbers between 10−5 and 10−3,
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Figure 1. Schematic of the experimental setup.

c × 10−3 (mol l−1) 2.4 2.8 3.3 4.0 4.6 5.2 5.8 7.0 7.8 8.0 8.3
c/CMC 0.28 0.33 0.38 0.46 0.53 0.63 0.67 0.81 0.93 0.96 1.00
σeq (dyn cm−1) 55 51 48 44 43 41 40 39 39 38 38

Table 1. SDS concentrations used in the experiments and the corresponding equilibrium
surface tension σeq measured by Tajima et al. (1970).

which, by the Landau–Levich law for dip-coating, results in film thicknesses on the
order of 1 to 30 microns. After a short pause of 15 s (justified by the adsorption time,
ta < 1 s, as demonstrated in the next subsection) the cell is lowered with a constant
dipping speed V into the same surfactant solution. We do not expect any significant
change in the film thickness during the short pause. The velocity of gravity drainage
for such thin films is estimated to be of the order of 10−2 mm s−1, and can be safely
neglected. Furthermore, no significant evaporation is to be expected since the solutions
are at room temperature. As a consequence of lowering the cell, the meniscus, when
viewed in the reference frame of the plate, is driven toward the air. The location of
the air/liquid interface is recorded from the side with a CCD camera (GL1 Canon)
at 30 frames s−1 with a spatial resolution of 2.2 × 10−2 cm/pixel. This procedure is
exactly the same one used by Chan & Liang (1997). After each experiment, the cell
is disassembled and placed in a bath of acetone for 20 minutes. The plates are then
rinsed with ethanol and then with deionized water. The cell is reassembled carefully,
avoiding any contamination or deposition of dust on the surface plates.

In our experiments only a single-component surfactant of well-characterized kinetics
is used. For this purpose, SDS, which is an anionic and soluble surfactant, with a 99%
purity (Sigma-Aldrich), is best suited. The basic properties of SDS are reviewed in
the next subsection. The experiments were performed with fresh solutions of SDS in
deionized water at the bulk concentrations listed in table 1 (together with the corres-
ponding equilibrium surface tension). The surface tension used to evaluate the
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capillary number is the equilibrium value for the particular concentration. The
viscosity of the different aqueous solutions is measured with a Cannon-Fenske
viscometer with accuracy 0.5% and does not change with the SDS concentration;
thus µ = 10−2 P is assumed. Although SDS is known to increase the wetting properties
of water (cf. Rosen 1989), it proved necessary to treat the surface of the glass plates to
obtain a uniform wetting layer, especially at low bulk concentrations. For this purpose,
the plates were roughened with a fine 600-grit sandpaper (1 abrasive grain/42 µm).
This treatment enhances the wetting properties of water on glass surfaces and in this
way the plates could be coated with the SDS solution over the range of concentrations
listed in table 1. We emphasize that having a roughened substrate is not crucially
important for the instability to take place – the same patterns were observed for
smooth substrates, but in view of the poor wetting properties in the low concentration
range we do not report these measurements.

2.2. Physical properties of SDS

In this subsection we provide a concise summary of the equilibrium and non-
equilibrium kinetic and material properties of SDS, which are necessary for estimates
of characteristic times of the different processes involved and for our linear stability
analysis in § 4, where we compare it with our experimental observations. To denote
SDS concentration we will be using either capital C, which is always dimensional by
the context, or lower-case c, which is non-dimensional and defined as c = C/Cm with
Cm being the CMC concentration of 8.3 mM.

The surfactant (chemical formula C12H25NaO4S) used in the experiments is of ionic
type with molar mass of 288.380 g mole−1. It should be mentioned that there is no
agreement on values of key constants even for the equilibrium case: for example
Fdhila & Duineveld (1996) state for the Langmuir constant:

KL =
ka

kdΓm

= 13.0
m3

mol
, where Γm = 10−5 mol

m2
,

based on a least-square fitting to the data by Woolfrey, Banzon & Groves (1987).
Several authors, e.g. Shen et al. (2002), use this value in their works. But the analysis
by Chang, Wang & Franses (1992) of the data by Elworthy & Mysels (1966) gives
the value

KL =
ka

kdΓm

= 0.11
m3

mol
, (2.1)

which is in the better agreement with equilibrium adsorption data and therefore is
used in our calculations.

Equilibrium data for surface concentration Γ vs. bulk concentration C are given
in figure 2(a): the equilibrium adsorption plot demonstrates the applicability of the
KL value in (2.1) versus that given by Fdhila & Duineveld (1996). The material
behaviour of SDS, σ (C), is given in figure 2(b), where we compare the data by
Tajima, Muramatsu & Sakaki (1970) (circles), measured by the drop volume method,
predictions by Szyszkowsky equation (dashed curve):

σ ∗ = σ0 + 2RT Γmln (1 + KLC),

and least-square fitting of σ ∗ with an additional polynomial to reflect the true
behaviour at high concentrations (solid curve):

σ = σ0{0.715(c − 2.745)(c − 0.519) + 1.76 ln (1 + 0.91c)}.
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Figure 2. Equilibrium data for SDS. (a) Adsorption isotherm of SDS at air-solution interface
at T = 25 ◦C. �, data by Tajima et al. (1970); —, least square fitting. (b) Surface tension vs. bulk
concentration of SDS solution: �, data by Tajima et al. (1970); – –, Szyszkowski equation;
—, least square fitting.
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Figure 3. Material behaviour of SDS.

In our calculations, we use the last curve since it depicts the saturation phenomenon
as opposed to the Szyszkowski equation. Figure 3 represents further information on
the material behaviour of SDS: σc, which is a derivative of σ (C) with respect to
the argument, and (−σc)C, which will be used in our further discussion in § 4. It
must be noted that the experimental data in figure 2(b) indicate a change of second
derivative sign, σcc, for concentrations between (2–5) mM, which substantially changes
the material behaviour σc.

While there are some (scattered) data for equilibrium Langmuir kinetics, there are
no available data for different bulk concentrations in the non-equilibrium case of
Langmuir–Hinshelwood (L-H) kinetics:

dΓ

dt
= kaC(1 − θ) − kdΓ,

where θ is a fractional coverage. Understanding L-H kinetic properties is of particular
importance since it provides a relatively simple model and also allows us to
evaluate different sorption characteristic times influencing the experimental procedure.
However, Chang & Franses (1992) mention that this model does not provide a concise
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Concentration Adsorption k∗
a Desorption k∗

d Parameter B

(mM) (m s−1) (s−1)

1.7 5.5 × 10−4 500 52
3.3 9.0 × 10−4 818 22
5.9 2.8 × 10−2 2.55 × 104 22
8.1 3.0 2.73 × 106 32

Table 2. Kinetics data for SDS at 25 ◦C.

fit of the data and proposed a modified Langmuir–Hinshelwood (mL-H) equation

dΓ

dt
= k∗

aC(1 − θ)e−Bθ − k∗
dΓ e−Bθ ,

which differs from L-H by the empirical constant B , amounting to an activation
energy barrier concept. This model allows a better fit to the data, but at the expense
of having all constants k∗

a , k∗
d and B as functions of the bulk concentration C, as

indicated in table 2.
For our purposes we need just an approximate model of L-H type, which can be

derived from the mL-H by conditional averaging, the essence of which consists in
obtaining ka and kd by averaging over the bulk concentration:

ka = 〈wk∗
a e−Bθ〉C =

1

C2 − C1

∫ C2

C1

w(c)k∗
a(C) e−B(C)θ dC, min

w

∫ C2

C1

[w(C) − 1] dC,

such that equilibrium Langmuir constant KL is kept fixed. The weight w(C) is equal
to unity in our case (incidentally), but in general should be determined in the course
of conditional averaging. The calculation gives

ka =0.64 × 10−5 m

s
, kd = 5.87 s−1.

This allows us to compare the characteristic times of different processes involved in
our experiments:

(a) Residence time: since the working distance of the dipping process is ∼ 20 cm
and the speed of dipping ∼ 1 cm s−1, the characteristic time of the experiment is

texp ∼ 20 s.

(b) Diffusion time: since mixing can take place only in the meniscus region of
size d ∼ 300 µm and the diffusivity of SDS in water (estimated from limiting ionic
mobilities) is D = 8 × 10−10 m2 s−1, the diffusion characteristic time is

tdiff ∼ d2

D
� 102 s.

(c) Averaged time of adsorption:

ta =
Γm

kaC
< 1 s,

for the working range of concentrations C ∈ (1.5, 8.2) mM.
(d) Averaged time of desorption:

td =
1

kd

< 0.2 s.
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Figure 4. Separation of characteristic time scale.
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Figure 5. Interface position during withdrawal in the laboratory frame for concentrations
C = 2.4 mM (×), C = 4.6 mM (�), C =5.8 mM (+).

Therefore, in view of the separation of time scales (cf. figure 4), the dynamics can
be modelled by Langmuir–Hinshelwood kinetics.

3. Linear regime: critical conditions
Some preliminary experiments were performed to repeat the experiments of Chan &

Liang (1997). We observed that there exists a critical speed above which the instability
occurs and the fingering patterns are very similar to those in figure 2 of Chan &
Liang (1997). Furthermore, we verified the crucial effect of surfactant and the wetting
layer by performing the following experiments. In the first a wetting layer of pure
water was deposited on the walls of the cell. When the cell was driven into the soap
solution, no instability was observed for a wide range of dipping speeds. In the second
experiment, the cell was coated with a wetting layer of surfactants solution and driven
into pure deionized water. In this case, we observe the same fingering patterns. These
two experiments show the importance of the presence of surfactants in the wetting
layer in causing this instability.

Another effect revealed in our experiments can be seen from figure 5, where the
position of the interface as a function of time in the laboratory frame is recorded. For
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(a) V = 0.50 cm s–1 (b) V = Vc = 0.64 cm s–1

(c) V = 1.52 cm s–1 (d) V = 3.56 cm s–1

Figure 6. Typical fingering patterns for different dipping speeds. The width of the
images is 10 cm.

times t ∈ [0, 22] s the interface moves up along with the withdrawing cell (however with
lower speed) since in this regime viscous friction dominates the hydrostatic pressure
gradient. But upon reaching a certain height these two major forces interchange their
roles. It is obvious that the speed of the interface relative the cell is different from that
of withdrawal and this difference is a function of gravity, viscosity and the speed of
withdrawal, with negligible dependence on the surface tension variation effects. The
last fact follows from the local influence of the capillarity near the meniscus versus
the global friction effect over the entire cell. Since the relationship between the actual
speed of dip-coating and the speed of withdrawal is monotonic we use the latter as
a working experimental variable.

3.1. Determining criticality

We show, in figure 6, typical images of the fingering patterns observed in the experi-
ments for different dipping speeds V for fixed bulk concentration, c = 0.67 CMC,
and fixed withdrawal speed, Vd = 2.03 cm s−1. We observe the existence of a threshold
velocity. Below a critical speed Vc, the interface remains essentially flat (figure 6a):
as the dipping speed increases, the interface develops fingering patterns with different
amplitudes. As in all such experiments the critical condition is difficult to measure
accurately, since it depends on determining weak growth or decay of nearly neutral
modes during a finite duration experiment. Furthermore, the instability is typically
very long wavelength, making the determination of Vc somewhat subjective, since it
is difficult to distinguish between a long-wave instability and finite domain effects.
Nonetheless, we can bracket the critical speed to within 4%. Figure 6(b) shows
a slightly deformed interface for a dipping speed equal to the critical velocity Vc.
Figure 6(c) shows the fingering patterns for a dipping speed V approximately twice
Vc where the fingers are non-uniformly spaced at the interface. The waveform typically
consists of a blunted front and sharp trailing tail. At higher dipping speeds (V ∼ 5Vc),
figure 6(d), the fingers show very nonlinear dynamics which we discuss in § 5.

3.2. Critical velocity Vc

The instability was studied for the different concentrations of SDS listed in table 1.
Over 100 experiments were performed for a wide range of withdrawal speed (and
thus film thickness) and for dipping speeds V from 0.127 to 3.56 cm s−1. Figure 7
shows the measurements of Vc versus the SDS concentration for different withdrawal
speeds. The qualitative behaviour of the critical velocity with C is the same for all
fixed withdrawal speeds. For very low concentrations, c < 0.2, no instability occurs:
the air/liquid interface remains flat, even at the highest dipping speed which can
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Figure 7. Vc versus c/CMC. No instability occurs above CMC.

be attained in our facilities. As the concentration increases, Vc drops to a first local
minimum at c ∼ 0.33. In the intermediate range of concentration, 0.33 <c < 0.7, the
critical velocity increases again and decreases to a second local minimum at c =0.7.
For higher concentrations, c � 0.8, the critical velocity increases quickly. This is a
striking observation and in disagreement with the experimental results of Chan &
Liang (1997), but confirms the theoretical prediction by Krechetnikov & Homsy
(2004). Chan & Liang (1997) observe that with SDS, the concentration should be
above CMC, and to produce the instability clearly and reproducibly they used c =4
and measure a critical velocity of 1.9 cm s−1. We repeated several experiments at c =2
and c = 4 without observing any instability. Moreover if the interface is perturbed
by some drops falling into the solution, the air/liquid interface still remains flat.
The difference between our observations and those from Chan & Liang (1997) can
perhaps be explained by the fact that SDS used by Chan & Liang (1997) does not
have the same purity as that used in our experiments. Lastly, figure 7 suggests a weak
dependence of Vc on Vd: the increase in withdrawal speed Vd leads to an increase in
the critical speed Vc for a given concentration. As we will see in § 4.4, this behaviour
is consistent with thickening of the wetting layer, which grows like Ca2/3

d according
to Landau–Levich theory.

4. Comparison with linear theory
While the detailed theory is developed in Krechetnikov & Homsy (2004), here we

provide its basic formulation in the low capillary, Ca = µV/σ , and Bond, Bo = ρgd2/σ ,
number regime. The problem is considered in a Cartesian system of coordinates
(refer to figure 8). For coordinates we use (x, y, z) as shown in figure 8, with
corresponding velocities (u, v, w). We neglect the gas-phase dynamics and formulate
the equations in the one-fluid approximation. Also, the surfactant exchange between
bulk and interface is modelled by sorption kinetics, which is the principal mode of the
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Figure 8. Basic setup.

surfactant transport (justified by the large value of Péclet number), so that surfactant
interchange between surface and bulk is kinetically controlled. Therefore, we do not
need to consider the bulk concentration dynamics. The general problem contains the
following independent physical parameters: surfactant concentrations in the wetting
layer C0, Γ0; two kinetic parameters ka, kd – the rates of adsorption and desorption
respectively; two geometrical parameters (d, h∞); the plate speed V and speed of
withdrawing Vd; the external field of gravity g; and three material properties of the
liquid (ρ, σ, µ).

Since Bo ∼ 10−2 throughout all experiments, the appropriate length scale is half the
gap width rather than the capillary length, so that the y-coordinate is scaled with
respect to the thickness of a gravity-free film deposited by withdrawing the cell with
speed Vd:

h∞ ∼ d

(
µVd

σ

)2/3

≡ d Ca2/3
d ,

that is y = dy, h = dh with the further non-dimensional scaling:

y = −1 + Ca2/3
d ŷ, h = 1 −Ca2/3

d ĥ.

The form of the latter is given for the branch y = −h(t, x, z) of the interface. The
general problem statement suggests the standard non-dimensionalizations for time
and space coordinates t = (d/v)t , x = dx, z = dz, pressure p = (σ0/d)p, and the two
stream functions (required to describe a three-dimensional flow such that u =ψy ,
w = φy , v = −ψx − φz), ψ =(V/d)ψ , ϕ = (V/d)ϕ. Following the procedure of Park &
Homsy (1984), the importance of axial pressure gradients and the viscous terms (in
view of no-slip boundary condition at the wall) dictates the scalings

t =
Ca4/3

d

Ca
t̂ , x =

Ca4/3
d

Ca
x̂, z =

Ca4/3
d

Ca
ẑ; p = p̂, ψ =Ca2/3

d ψ̂, ϕ =Ca2/3
d ϕ̂,
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where Ca4/3
d /Ca comes from the presence of the two independent capillary numbers,

Cad (withdrawing) and Ca (dipping). When Cad = Ca, one recovers the classical scaling
Ca1/3. The material properties (interfacial tension and surfactant concentration) are
scaled with respect to the appropriate values in the pre-existing wetting layer,

σ = σ0(Γ0) σ, γ = Γ0 γ.

Further we use capitals for the basic-state variables and lower case for disturbance
variables.

As demonstrated in Krechetnikov & Homsy (2004), the observed instability is
due to significant surface tension gradients. Here we split the analysis in two basic
steps: first we recapitulate the demonstration of Krechetnikov & Homsy (2004) of
the intrinsic instability of an interface under the presence of surface concentration
gradients and then we study the formation of this gradient in our particular situation.

4.1. Linearized stability equations

Consideration of the temporal stability of the parallel (x-independent) basic state

Ĥ = const, P̂ = 0, Σ = const, Γ̂ = const, Û = 1, V̂ = Ŵ = 0,

leads to the following set of linear disturbance equations (with 
 being the in-plane
Laplacian, ∂2

x + ∂2
z ):

velocity field,

ψ̂ ′
yyy = p̂′

x,

ϕ̂′
yyy = p̂′

z,

surfactant transport,

γ̂ ′
t + Γ̂ (ψ̂ ′

xy + ϕ̂′
yz) + Ψ̂yγ

′
x =

Ca

Ca4/3
d

1

Pes


γ̂ ′ − Ca4/3
d

Ca
κSt[Kρ + 1]γ̂ ′,

interfacial conditions:
kinematic,

ĥ′
t + Ψ̂yĥ

′
x = −ψ̂ ′

x − ϕ̂′
z,

normal dynamic,

p̂′ +

(
Ca

Cad

)2

Σ
ĥ′ = −2

(
Ca

Cad

)2

Ca2/3
d [ψ̂ ′

xy + ϕ̂′
yz],

tangential dynamic,

ΣΓ γ̂ ′
x = Ca2/3

d ψ̂ ′
yy,

ΣΓ γ̂ ′
z = Ca2/3

d ϕ̂′
yy,

and no-slip boundary conditions at the wall,

ŷ = 0: ψ̂ ′ = ψ̂ ′
y = 0, ϕ̂′ = ϕ̂′

y = 0.

The several non-dimensional parameters are given by

Ca =
µV

σ0

, Cad =
µVd

σ0

, St =
ka

V
, K =

kaC0

kdΓ0

, κ =
d C0

Γ0

1

K
, ρ =

Γ0

Γm

.
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Eliminating the disturbance pressure and velocity field, and transforming the result
to Fourier space the final system for linear evolution of disturbances can be cast in
the canonical form:

γ̃ ′
t + aγ̃ ′

x + γ̃
III

− (ζ
V
m + η

II
)
γ̃ = −3

2

[

2

I
h̃ − m

IV

2γ̃

]
, (4.1a)

h̃′
t + ah̃′

x = −
[


2

I
h̃ − m

IV

2γ̃

]
+

ζm

2
V


γ̃ . (4.1b)

Here we utilized the definitions:

m = −2
Γ ΣΓ

Σ
, ζ =

1

2

1

Ca1/3
d

(
3Σ

Ĥκ St Ca (Kρ + 1)

)1/2

, η =
τ

ξ 2

Ca

Ca4/3
d

1

Pes

, a =
τ

ξ
,

where the parameter m is a primary bifurcation parameter containing the physics of
the surfactant material behaviour.

The physical meaning and origin of each term in these equation are discussed in
detail by Krechetnikov & Homsy (2004). Here we just note from (4.1a) that the
effects of surface tension (capillary pressure(I)), surface diffusion(II) and bulk-interface
interchange(III) (St > 0) are stabilizing, while the effect of the Marangoni stresses(IV),
(ΣΓ < 0), is destabilizing as it comes from the normal dynamical condition. At the
same time, the Marangoni effect(V), originating from the advection of surfactant
by the Marangoni-induced disturbance flow, is stabilizing. As we will see from the
normal-mode analysis the destabilizing Marangoni stresses overcome the stabilizing
role of the other contributions and produces the instability.

4.2. Normal-mode analysis

Assuming the normal mode of the disturbance to be of the form(
γ̃

h̃

)
= eλt+ikz+εx

(
γ̄

h̄

)
, Re(ε) > 0,

where ε is the rate of the disturbance decay as x̃ → −∞, we find that the dispersion
relation is a function of the scaled wavenumber k, the material behaviour m, sorption–
desorption kinetics ζ and the surface diffusion η:

λ2 + bλ + c = 0, (4.2)

with

b = 2aε + 1 +
(
1 − 3

2
m

)
δ2 + (ζm + η)δ,

c = (aε + δ2)
(
1 + aε + δ(ζm + η) − 3

2
mδ2

)
− 3

2
mδ2

(
1
2
ζ δ − δ2

)
,

where δ = k2 − ε2. In the presence of surfactants the largest growth rate corresponds
to zero wavenumber (in reality there is a cut-off due to the finite cell width)

λ = −2(1 − mε2ζ ) + O(ε),

so that the critical bifurcation parameter corresponds to

m ∼ 1

ζε2
⇐⇒ −2

Γ ΣΓ

Σ
∼ 2Ca1/3

d

ε2

(
H κSt Ca (K ρ + 1)

3Σ

)1/2

. (4.3)

As discussed in detail below, equation (4.3) connects the critical speed to the key
kinetic and material parameters and to the wetting film thickness. The instability can
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Figure 9. Locus of Re(λ1) = 0. The bold curves correspond to the marginal stability
conditions. The flow is unstable above and stable below these curves.

be understood as the effect of thickening of the transition region – the growth of
the v component of the disturbance velocity. It should be noticed from (4.3) that the
dependence for the bifurcation parameter

m ∼ Ĥ 1/2,

has non-trivial physical consequences, as will be discussed later. Thus, the global
bifurcation point is given by (

kc = 0, mc =
1

ζε2

)
.

The locus of Re(λ1) = 0 for the most unstable eigenvalue λ1 in the case ζ � 1, ε � 1,
η � 1 is depicted in figure 9 as a bold curve and essentially means that for any m > mc

there exist wavenumbers k near the origin such that the instability takes place.

4.3. Surfactant accumulation in a cap region

As one can infer from (4.3), there is no dependence of mc on the speed of dipping since
Ca St is independent of V : the above analysis corresponds to the intrinsic instability
of the interface, which does not ‘know’ anything about its motion. Of course, a
true free film does not exhibit instability in view of the homogeneous distribution of
surfactant in a state of equilibrium. Thus, the instability appears only under conditions
favourable to the creation of significant gradients in surfactant concentration. The
problem considered here is one those cases: the effect of accumulation of the surfactant
in a cap region due to the motion of the plates is a mechanism by which the required
concentration gradients are produced.

In order to connect the intrinsic instability of a thin film with the effect of accumu-
lation, one needs to use the appropriate expression for the surfactant concentration Γ .
From a simple balance of surfactant transport in a cap region (cf. figure 10) we have

−2Γ0V = l[kaC0(1 − ρΓ ) − kdΓ0Γ ],

with l being the effective length of the interface, where equilibrated exchange with the
bulk takes place (taken as the meniscus length, l � πd). Thus the effect of accumulation
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V Γ0 V Γ0

C0

Γ

Figure 10. Surfactant transport in a cap region.

results in the concentration in the cap region

Γ =
1 + 2(d/l)/Stκ ′

ρ(1 + 1/ρK)
, with κ ′ =

dC0

Γ0

, (4.4)

which is higher than that in the wetting layer and entails the existence of a
surfactant concentration gradient. This linear approximation does not account for
either nonlinear or saturation phenomenon, but nevertheless is valid for a wide range
of speeds since V � d kd in most cases.

4.4. Prediction of critical functionality

Using (4.4), (4.3) can be simplified to give an expression for the dimensionless critical
speed

Vc

lkd

=
1 + Kmc

2

(
A

σ 1/2

(−σc)

Ĥ 1/2

c(1 + Kmc)1/2
− 1

)
, A =

(
Ca St κ

3

)1/2
Ca1/3

d

ε2
, (4.5)

where Km = kaCm/kdΓm, σ is considered a function of c and σc as before is a derivative
with respect to the argument. Thus, as follows from (4.5), the most important experi-
mental quantities for a given surfactant are concentration, c ( ≡ C0/Cm), and wetting
layer thickness, Ĥ , which is considered as independent in view of its dependence on
the speed of withdrawal Vd through Marangoni effects. Therefore, the critical velocity
Vc can be considered as a function of these two parameters. Using typical material
behaviour of pure surfactants σ (c), as shown schematically in figure 3, the critical
speed ratio vc as a function of the bulk concentration c in a pre-existing wetting layer
has the generic behaviour sketched in figure 11 when Ĥ is taken to be independent
of surfactant concentration. The first asymptote corresponds to the limit c → 0, while
the second one is associated with the saturation phenomenon close to CMC.

One of the governing experimental parameters is the dimensionless wetting layer

thickness Ĥ , as suggested by the theory above. In our experiments, the coating
process is characterized by low capillary numbers Cad =µVd/σeq in the range from
10−5 to 10−3 which, for our gap width, would result in wetting layer thicknesses from
1 to 30 microns according to the theory by Landau & Levich (1942). This order
of magnitude of the film thickness is not substantially modified by the presence of
a roughened substrate or a surfactant, which actually stabilize the film against the
gravity drainage and dewetting instabilities. However there exist neither theory nor
experimental studies of dip coating under these conditions. Therefore we discuss only
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Figure 12. Marginal stability phenomenon: theory and experiment. (a) Schematic of wetting
layer thickness Ĥ as a function of surfactant concentration after Quéré (1999). (b) Comparison
of the linear theory (solid curve) with Ĥ from (a) and experimental data (dashed curve),
V = 0.64 cm s−1.

a qualitative behaviour of the film thickness as shown in figure 12(a). This generic
behaviour is analogous to that from the experimental study by de Ryck & Quéré
(1993) (see also discussion in Quéré 1999), who measured film thickness for coating
of a nickel wire with an SDS solution. Since the Bond number associated with the
estimated roughness is much less than unity, one can expect smooth coating and
therefore their setup is applicable. The maximum in the wetting film thickness is
correlated with the inflection point in figure 3, at which, as speculated by Quéré
(1999), the Marangoni flow is most efficient. However, we should note that there
exists neither theoretical nor experimental confirmation of this predominant role of
Marangoni effects.

Considering the constants A and l as empirical parameters (since their values can
be established only from nonlinear analysis) and assuming the qualitative behaviour
of Ĥ depicted in figure 12(a), one can easily fit the curve to the experimental data
as shown on figure 12(b). The hump present in the curve Vc(c) (cf. figure 12b) for
intermediate values of c is due to the factor of Ĥ 1/2 in equation (4.5), whose functional
dependence on c is discussed above.
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t = 3.66 s

t = 4.83 s

t = 8.33 s

Figure 13. Drifting phenomenon – finger moving along the interface.

Concluding, we note that the experiments performed near the threshold of instability
confirm well the theoretical predictions: namely, the generic shape of the marginal
stability curve along with more subtle features such as a ‘hump’ for intermediate
values of concentration. Finally, the primary discrepancy with the results by Chan &
Liang (1997) – no instability above CMC – is validated experimentally.

5. Nonlinear regime
In this section, we present different regimes of pattern dynamics observed above the

threshold of instability. We observe two different regimes, one in which the patterns
are time-dependent and a second one in which they reach a steady state. In figure 12(b)
the border between time-dependent and steady regimes of fingering is designated by
a vertical line. In general, the time-dependent regime is more often observed, in which
the fingers show a wide range of dynamics like drifting, merging of fingers and air
bubble ejection, all of which are discussed below.

5.1. Unsteady patterns: qualitative map

Drifting fingers appear throughout the time-dependent unstable regime. Figure 13
shows images of a finger travelling along the interface for a surfactant solution
of C = 2.8 × 10−3 mol l−1, a dipping speed V =1.52 cm s−1, (V/Vc = 1.1), and a
withdrawal speed Vd =0.635 cm s−1. The finger grows near one boundary and travels
from one side of the channel to the other at a constant speed u.

The second phenomenon in the time-dependent unstable regime is the merging of
fingers. Figure 14 shows the evolution of the interface deformation when two fingers
near the right boundary are merging together. As the fingers get closer together, the
interface which separates them, initially flat, is distorted until the merging point. After
this transition, the merged finger advances and ejects a small air bubble from the tail,
which is the third phenomenon we observed.

Cusp formation and bubble ejection tend to occur at higher speeds, V/Vc > 2.
Figure 15 shows the formation of air bubbles, which are ejected from the finger
tails. We observe this process quite often and the images of figure 15 are taken from
a series of experiments performed with a surfactant solution c = 0.34 and a fixed
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t = 2 s t = 5.17 s

t = 8 s t = 9.33 s

t = 10.67 s t = 11.67 s

Figure 14. Merging phenomenon for a surfactant solution c = 0.67. The dipping speed is
V = 1.65 cm s−1 (V/Vc = 2.4).

Figure 15. Bubble ejection phenomenon for a surfactant solution c = 0.34 (time runs from
left to right). The dipping speed is V = 3.3 cm s−1 (V/Vc = 2).

withdrawal speed, Vd = 1.02 cm s−1. Spatio-temporal diagrams (not shown) indicate
that the phenomenon repeats itself in quasi-periodic fashion.

5.2. Steady patterns

A steady-state regime exists for a bulk concentrations c � 0.67 and for high withdrawal
speeds, as shown in figure 16. For dipping speeds V � 2.5Vc, the finger shapes in the
steady regime are similar. The interface advances at constant velocity and develops
fingering patterns with blunt tips and sharp thin tails.

Figure 16 shows images of the evolution of the interface to a steady state for a
bulk concentration c = 0.67 and a dipping speed V/Vc = 3.5. At the beginning of the
experiment, when the wetted cell is lowered into the surfactant solution, the interface
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(a) t = 0.13 s (b) t = 2.33 s

(c) t = 5.83 s (d) t = 6.7 s

Figure 16. Evolution to a steady-state regime for bulk concentration of c = 0.67 and
withdrawal speed Vd = 2.03 cm s−1. The image width is 10 cm.
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Figure 17. Amplitude of fingers for c = 0.67 and Vc = 0.78 cm s−1. (a) Amplitude versus
V − Vc . (b) Steady patterns.

remains flat for approximatively 2, after which it becomes unstable and perturbations
start to grow. This deviation corresponds to the onset of the instability. After a
transient, the interface evolves to a static periodic shape of constant wavelength. In
the steady state, (figure 16c) flat regions of the interface move in the direction of the
interface motion and sharp tails point in the opposite direction.

In figure 17 the amplitude of the fingers for the same surfactant solution c = 0.67
and fixed withdrawal speed is presented as a function of V − Vc. The measurements
correspond to the average over all the steady patterns observed. For dipping speeds
slightly above the critical velocity, the measurements are difficult because the cell
reaches the bottom of the tank before the patterns are near a steady regime.
Nevertheless, we find that the amplitude of the steady patterns increases as the
dipping speed increases above the threshold until it reaches a plateau for speeds
V � 3Vc. Although the data are sparse, this behaviour is suggestive of a supercritical
bifurcation.
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5.3. Discussion

Although we do not attempt a theoretical understanding of the various nonlinear
phenomenon observed here, we do offer a few comments about them. The first obvious
nonlinear feature is the limit to the depth of propagation of the fingers, independent
of whether they equilibrate to steady structures or not. This is in contrast to viscous
fingering in Hele-Shaw cells in which fingers propagate without limit. Furthermore,
the wave form of the fingers is nearly harmonic at the critical condition and becomes
increasingly complex in the nonlinear regime. These features – a limit to propagation
and increasingly nonlinear wave forms leading to blunt fronts and sharp trailing
troughs – are strikingly similar to other interfacial instability problems, notably
directional solidification (cf. de Cheveigne, Guthmann & Lebrun 1986) and the ribbing
instability (also referred to as the ‘printer’s instability’; cf. Rabaud 1994). In those
problems, finger propagation is limited due to the presence of a stabilizing gradient
in composition/temperature and capillary pressure, respectively. Such a stabilizing
gradient is not present in the base state here, but may result from the complicated
processes determining the surfactant distribution in both the axial direction and in
the thin gap of the Hele-Shaw cell.

The other nonlinear phenomenon of drifting and merging are also qualitatively
similar to those occurring in ribbing and directional solidification. In all these
problems, the eigenvalues are not necessarily real as well, which means that standing
waves are susceptible to symmetry-breaking secondary instabilities leading to drifting
and merging. The origins of such secondary instabilities are myriad, but in the present
experiments might be nucleated by inevitable non-uniformities in the wetting layer
thickness, surface roughness, and/or the small gravity-driven drainage. We speculate
that these mechanisms can appear at lower surfactant concentrations where they can
compete more effectively with Marangoni stresses, which might explain the occurrence
of steady patterns only for the higher concentrations of SDS.

Finally, the phenomenon of bubble ejection is reminiscent of similar features in
ribbing, tip-streaming from drops (e.g. Taylor 1934), and cusp formation in surfactant
solutions (e.g. Antanovskii 1994). All of these in turn are due to the local extensional
flow, viewed in the frame of the fingers, being so strong as to overwhelm the capillary
pressures due to surface tension and curvature in the sharp trailing regions of the
fingers. In all these problems bubble ejection, tip-streaming and cusp formation occur
when a suitably defined capillary number based on the local extension rate exceeds a
critical value. This is consistent with our observation of bubble ejection only at high
speeds.

The study of all these mechanisms and questions would involve detailed modelling
of the flow and surfactant transport, coupled with nonlinear treatments of the free
boundary problem, and is outside the scope of this paper.

6. Summary and conclusions
This experimental study has deepened our understanding of the simple, but

fundamentally important, fingering phenomenon which is solely due to surfactant-
driven surface tension variation effects.

We have clarified the effects of material behaviour and kinetic properties, in
accord with the theoretical study of Krechetnikov & Homsy (2004), and a reasonable
qualitative agreement was found with a linear theory. Notably, our experiments verify
the theoretical prediction that no instability occurs above CMC, which provides
support for the generic mechanism identified in Krechetnikov & Homsy (2004).
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However, for an accurate quantitative comparison some further improvements of
both theory and experiment are needed. In particular, measurements of wetting
layer thickness as a function of surfactant concentration and substrate roughness
are necessary. At the same time, the linear theory should be generalized to account
for non-parallel effects along with a more accurate description of kinetic properties.
Nevertheless, despite these shortcomings, a significant understanding of the underlying
physics is attained.

A rich variety of nonlinear phenomenon is observed in this classical Hele-Shaw
setup, which include unsteady merging and drifting of fingers, cusp formation with air
bubble ejection, and steady fingering occurring over a narrow range of concentrations.
All of these observed phenomenon lack any kind of theoretical description.

This work was supported by the Office of Basic Energy Sciences, US Department
of Energy.
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